Evolutionary Background of Game B

From Game B Wiki
Jump to navigation Jump to search

The properties of Coherence and Emergence that sit at the foundation or nature on planet earth set the backdrop for human evolution. The following emerging properties of humans are the foundation of Game B assumptions.

Our human advantage lies in collective intelligence

Skipping forward, the evolution of humans was a big milestone in the history of the universe. For the first time, something could contemplate its existence and consciously change the future.

Anatomically modern humans evolved about 150,000 years ago. As Jordan Hall mentions, human evolution required many different pieces to come together. They include:

  • Humans beginning to grow larger and larger crania
  • Significant increases of the gestation period
  • Increased male attention in parenting
  • Grandmothers living long enough to provide resources and knowledge for support

According to The Late Upper Paleolithic Model, humans were neither cognitively nor behaviorally "modern" until around 50,000 years ago. Jordan Hall characterizes this shift in human capacity as the emergence of our Collective Intelligence toolkit, including abstract thinking, planning depth, and symbolic behavior.


Humans found coherence under the Dunbar number

With the new collective intelligence toolkit, groups of humans gathered at the band level numbering between 5 to 150. These groups were meta-stable due to the high level of coherence and ability to police defection. Robin Dunbar found a correlation between primate brain size and average social group size. He proposed that for humans, 150 appears to be the limit of our neurological capacities to model every other member and all of the complexities of relationships. At 150, Dunbar speculated that 42% of the group's time would need to be devoted to social grooming.

As Jim Rutt hypothesized, a band that could have coherence at 150 had a substantial advantage over a band that could only have coherence at 80, so there was a group selection advantage. There was an evolutionary benefit of forming larger neocortices until the limit of the pelvic girdle in the human female was reached.

As examples, Dunbar found 150 as the estimated size of a Neolithic farming village; 150 as the splitting point of Hutterite settlements; 200 as the upper bound on the number of academics in a discipline's sub-specialisation. As bands approach 150, they tend to fractionate into two units.

With high degrees of coherence under 150, humans quickly acquired an asymmetric position relative to their natural environment and began to shape nature for their own needs. This asymmetric power allowed humans to spread, survive, and thrive in most environments, assuming the role of apex predators. Ever since the Cognitive Revolution, humans have been able to change their behavior quickly, transmitting new behaviors to future generations without any need for genetic or environmental changes. Consequently, the speed of evolution became dominated by cultural evolution rather than biological evolution.

Even with new (digital) technology increasing social connectivity across the globe, research still indicates that humans are somewhat restricted by the Dunbar number in the number of stable social relationships. A study of Twitter activity by Gonçalves, Perra and Vespignani in 2011 validated the Dunbar threshold insofar as biological and cognitive limits still apply in the current attention economy.

When was this coherence lost?

Humans spread and dominated every niche. By 11,000 years ago, the population grew to 6 - 8M, which was about the largest forager population the planet could support.

Agriculture arose independently across the world, starting in Mesopotamia, 11,000 years ago. This was likely because:

  1. Global temperature rose after the last ice age
  2. Humans gained a deeper understanding of plants and animals
  3. Human communities grew dense, entailing increasing competition for resources

Farming allowed for the support of a larger population, taking up a much smaller land area than foraging. As humans began to organize beyond the Dunbar number, a larger population lead to more options for defection.

File:Threshold 7 – Rise of Agriculture.jpg
Ingredients and goldilocks conditions for the rise of agriculture
File:Temp population.jpg
Rising global temperatures after the last ice age